UV-targeted dinucleotides are not depleted in light-exposed prokaryotic genomes.
نویسندگان
چکیده
We have investigated the hypothesis that pyrimidine dinucleotides are avoided in light-exposed genomes as the result of selective pressure due to high ultraviolet (UV) exposure. The main damage to DNA produced by UV radiation is known to be the formation of pyrimidine photoproducts: it is estimated that about 10 dimers per minute are formed in an Escherichia coli chromosome exposed to the UV light in direct overhead sunlight at sea level. It is also known that on an E. coli chromosome exposed to UVb wavelengths (290-320 nm), pyrimidine photoproducts are formed in the following proportions: 59% TpT, 7% CpC, and 34% CpT plus TpC. We have analyzed all available complete prokaryotic genomes and the model organism Prochlorococcus marinus and have found that pyrimidine dinucleotides are not systematically avoided. This suggests that prokaryotes must have sufficiently effective protection and repair systems for UV exposure to not affect their dinucleotide composition.
منابع مشابه
Induction of Nucleic Acid Damage in Viral Genomes using Riboflavin in Combination with UV Light
Background and Aims: Despite the screening of blood donors, blood transfusion represents an ideal port of entry for blood-borne infection. Blood-borne pathogen transmission has been a concern since the earliest days of transfusion. The blood product of platelet (PLT) concentrates is still faced with the risk of bacterial and viral contaminations. Pathogen inactivation technologies offer a proac...
متن کاملInduction of Nucleic Acid Damage in Viral Genomes Using Riboflavin in Combination with UV Light
Background and Aims: Despite the screening of blood donors, blood transfusion represents an ideal port of entry for blood-borne infection. Blood-borne pathogen transmission has been a concern since the earliest days of transfusion. The blood product of platelet (PLT) concentrates is still faced with the risk of bacterial and viral contaminations. Pathogen inactivation technologies offer a proac...
متن کاملConservation vs. variation of dinucleotide frequencies across bacterial and archaeal genomes: evolutionary implications
During the long history of biological evolution, genome structures have undergone enormous changes. Nevertheless, some traits or vestiges of the primordial genome (defined as the most primitive nucleic acid genome for life on earth in this paper) may remain in modern genetic systems. It is of great importance to find these traits or vestiges for the study of the origin and evolution of genomes....
متن کاملAlkaline lability of fluorescent photoproducts produced in ultraviolet light-irradiated DNA.
Ultraviolet light induces alkaline labile lesions in DNA. These lesions occur at the bipyrimidine sites T-C, C-C, and T-T, and do not result from the formation of pyrimidine cyclobutane dimers. To examine the chemical nature of the alkaline labile lesions, pyrimidine dinucleotides (2'-deoxythymidylyl-(3' leads to 5')-2'-deoxycytidine, 2'-deoxythymidylyl-(3' leads to 5')-2'-deoxythymidine, 2'-de...
متن کاملInvestigations of Oligonucleotide Usage Variance Within and Between Prokaryotes
Oligonucleotide usage in archaeal and bacterial genomes can be linked to a number of properties, including codon usage (trinucleotides), DNA base-stacking energy (dinucleotides), and DNA structural conformation (di- to tetranucleotides). We wanted to assess the statistical information potential of different DNA 'word-sizes' and explore how oligonucleotide frequencies differ in coding and non-co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology and evolution
دوره 23 11 شماره
صفحات -
تاریخ انتشار 2006